Hello Ivar,
I would like to add one question to the discussion.
After running my simulation and computing the effective masses for each direction, let's call them m_eff_x, m_eff_y, m_eff_z, I would like to combine them in order to obtain a meaningful effective mass for each mode i (something like sum over all directions instead of sum over all modes -> m_eff_i = function(m_eff_x_i, m_eff_y_i, m_eff_z_i) ).
Does such a combination exist? Which formula defines it?
Thank you very much for your help!
Best regards
luca
I would like to add one question to the discussion.
After running my simulation and computing the effective masses for each direction, let's call them m_eff_x, m_eff_y, m_eff_z, I would like to combine them in order to obtain a meaningful effective mass for each mode i (something like sum over all directions instead of sum over all modes -> m_eff_i = function(m_eff_x_i, m_eff_y_i, m_eff_z_i) ).
Does such a combination exist? Which formula defines it?
Thank you very much for your help!
Best regards
luca